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Abstract. The ALE-AMR code developed for NIF is a multi-material hydro-code that models
target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary
Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model
a wide range of physical conditions and spatial scales. The large range of temperatures
encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal
conduction and radiative transport. These physical effects can be modeled approximately with
the aid of the diffusion equation. We present a novel method for the solution of the diffusion
equation on a composite mesh in order to capture these physical effects.

1. Introduction

This work is focused on improving the modeling capability for NIF debris and shrapnel
simulations. Such simulations are being used by the NIF program to predict fragment sizes and
velocities in the aftermath of a NIF target shot. This capability allows us to detect fragments
that may damage NIF optics and diagnostics beforehand and redesign targets in order to reduce
such risks before NIF target shots are taken.

In this paper we present recent progress in adding heat conduction and radiation transport
effects to the ALE-AMR code. In order to add these effects an AMR (Adaptive Mesh
Refinement) capable diffusion solver is required. We will describe our diffusion solver and the
testing we used to show that it is 2nd order accurate. We will also describe the work required
to introduce heat conduction and radiation transport modules into ALE-AMR. Finally, we will
present a demonstration simulation using these new capabilities.

2. AMR Capable Finite Element Diffusion Solver

To work with ALE-AMR our diffusion solver must be capable of operating on the multi-level,
multi-processor, block structured SAMRAI data representing the ALE-AMR variables. The
Finite Element Method (FEM), however, requires data in a single level composite mesh format.
Also after the solution is obtained in the composite mesh format it must be used to update the
ALE-AMR data in the multi-level format. This necessitates a mapping capable of translating
between the SAMRAI representation and the composite mesh representation.

To begin forming this mapping we detect which nodes in the SAMRAI representation are at
the finest level for that location and thus need to be nodes in the composite mesh. For each



finest node that is detected a unique, non-contiguous fine ID number can be computed using
the index of the node and vice versa as follows

F = i + jNi + kNiNj

i = F%Ni, j = (F/Ni)%Nj , k = F/(NiNj)
(1)

where (i, j, k) is the SAMRAI index location of the node assuming it was refined to the finest
level and (Ni, Nj , Nk) is the number of nodes in each direction assuming the entire block was
refined to the finest level. Every unique node is then counted in sequence to yield a contiguous
global ID numbering for the nodes. A map between this contiguous global ID number and the
non-contiguous fine ID number is constructed and stored for later use. When more than one
CPU is used each CPU counts the nodes it owns and the numbers are shifted by the number of
nodes owned by the lower numbered CPUs. For nodes that are shared by more than one CPU
in the SAMRAI representation, a tie breaker is used to determine which CPU owns the node
and all the other CPUs sharing the node store the global ID in another map for later use. These
maps and (1) allow straightforward translation between indices in the SAMRAI representation
and global ID numbers for the composite mesh representation.

In addition to this translation between representations, a family of finite elements is required
to handle all of the cases found in the composite mesh. For elements that are not at a coarse-
fine boundary, standard bilinear quads in 2D and trilinear hexes in 3D are used. However,
there are many cases of elements at the coarse-fine boundary with each case having a different
combination of element faces refined. For these elements we use an approach similar to the
transition elements found in [1]. The extra nodes on the faces due to the transition have hat
basis functions along that face with the value reaching 1 at that node and 0 at the other nodes
on the face. In the dimension not on the face the basis function is simply linear. The corner
basis functions in our transition elements are the standard linear functions with fractions of the
new transition basis functions subtracted out in order to ensure that the corner basis function
is 0 at all the transition nodes. This method of construction yields a set of basis functions that
satisfies the interpolation property and also enforces continuity across all the element faces.

Using the composite mesh mapping and the family of transition elements it is now possible to
apply the FEM within the framework of ALE-AMR. We now turn our attention to the solution
of the following diffusion equation.

∇ · δ∇u + σu = f (2)

Applying the standard Galerkin approach yields the following linear system approximation

Au + b = f

A = Mσ − Kδ

(Mα)ij =
∫
Ω

αφiφjdΩ
(Kα)ij =

∫
Ω

α∇φi · ∇φjdΩ
b = 0

(3)

where M is the mass matrix, K is the stiffness matrix, and an insulating boundary means b = 0.
A set of quadrature rules is needed to approximate the integrals and construct the matrices.
For the standard elements we use a basic mass lumping integration rule with quadrature points
located at the corners of the element. Using this quadrature rule generates an A matrix that has
the M-matrix property and thus is inverse positive. Inverse positivity is an important property
for physical models such as heat conduction since temperatures are expected to stay above
absolute zero. For the transition elements a set of mass lumping quadrature rules is constructed
by evaluating points at every node location in the element including the corner nodes and the
nodes on the transition faces. Unfortunately the gradient of the transition basis functions is



Figure 1. Convergence test on a mesh with transition elements indicates 2nd order accuracy.

undefined at the transition node locations. We step around this problem by taking the limits of
the gradient from each distinct region touching the point (2 in 2D and 4 in 3D) and averaging
those limits. This allows the formation of lumped mass and stiffness matrices found in (3). That
linear system is solved by using the HYPRE library providing an approximate solution to the
diffusion equation.

We measure the accuracy of this solution using a standard L2 error convergence test. A
randomized mesh is generated with the right side refined using a ratio of 3:1 in order to test the
transition elements Figure 1. The entire random mesh is then refined 3 more times yielding a
total of 4 meshes. Each of these meshes is used to approximate the solution to a simple Possion
problem with non-zero Dirichlet boundary. These approximations are then compared to the
analytical result to obtain the L2 norm of the error. The behavior of these error norms, shown
in Figure 1, indicates that the method has 2nd order convergence.

3. Heat Conduction and Radiation Transport Modeling

Now that we have a diffusion equation solver, both heat conduction and radiation transport can
be modeled with relative ease. For heat conduction the equation can be time evolved implicitly
by using the solver at each time step yielding

Cv
T n+1

−T n

∆t
= ∇ · Dn

∇Tn+1
− αTn+1

δ = Dn, σ = −α −
Cv

∆t
Tn, f = −

Cv

∆t
Tn

(4)

where Cv is the specific heat, T is temperature represented at the nodes, D is the heat
conductivity, and α is the absorptivity. The variables δ, σ, and f are the diffusion equation
parameters from (2). Similarly the diffusion approximation to radiation transport can be
implicitly time evolved yielding

En+1

R
−En

R
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= ∇ · λ( c
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), σ = −κ̃pc −

1
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, f = −
1

∆t
− κ̃pB

n

(5)

where ER is the radiation energy represented at the nodes, λ is a function used to impose flux
limiting on the diffusion approximation, c is the speed of light, κr is the Rosseland opacity, κ̃P

is a modification to Planck opacity which is used to linearize the equation as in [2], and B is
the blackbody intensity. After ER and T are evolved through the above equations, the material
temperatures and energies must be updated to reflect the changes. However, in ALE-AMR the
material temperatures and energies are represented at the cell centers and not the nodal values
which are being updated by the heat conduction and radiation transport. A method for mapping
variables from nodes to cell centers and back is needed to couple the hydro variables with nodal
variables used in the diffusion solver. We chose the method described by [3] in which changes
in variables are mapped between nodes and cells. These mappings make it possible to transfer
energy between nodes and cells without introducing large amounts of artificial diffusion.
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Figure 2. (a) Setup for an Al X-Ray interaction simulation. A 105J/cm2 source of X-Rays was
loaded onto the surface of an Al foil. (b,c) Density of remaining solid Al after 0.5 µs without
and with radiation transport effects respectively.

4. Simulation Results

To demonstrate this new capability in ALE-AMR we chose a simulation related to the NIF
debris and shrapnel work. In these 2D simulations a 1ns 105J/cm2 x-ray pulse was loaded
onto 2mm of the surface of a 3mm thick Al foil. The simulations were allowed to run to
0.5µs both with and without the new radiation transport module active. At the end of the
simulations we captured density plots of the Al, and thresholded those densities by the material
state. All of the Al that had a temperature above the melting point was thresholded to white
while all of the Al that was still solid was drawn with the color scale (see Figure 2). While
the differences between the simulations appear small they are still significant. In the simulation
without radiation transport the foil appears ready to spall off solid material from the back side.
In the simulation with radiation transport the material coming off the back side has melted
which means it will be more likely to break into smaller droplets in transit to any optics or
diagnostics. The droplets are a lower debris risk which is exactly what we are tasked to measure
for NIF targets. This highlights the importance of modeling radiation transport to the NIF
debris and shrapnel project.

5. Conclusions

The ALE-AMR code is now capable of modeling heat conduction and radiation transport effects.
In order to model these effects in the ALE-AMR framework an AMR capable FEM diffusion
solver was developed. This diffusion solver was put through an L2 error convergence test to show
that it is 2nd order accurate. Heat conduction and Radiation Transport modules were developed
using this diffusion solver and a technique for mapping variables from cells to nodes and vice
versa. Also an X-Ray Al foil interaction was simulated with and without radiation transport
effects, highlighting the importance of radiation transport to the NIF debris and shrapnel work.
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